update the tutorial 2
This commit is contained in:
parent
309f6c6849
commit
dad4338971
53
T2_tools_define/random_fact.py
Normal file
53
T2_tools_define/random_fact.py
Normal file
@ -0,0 +1,53 @@
|
|||||||
|
from typing import Optional
|
||||||
|
import requests
|
||||||
|
|
||||||
|
from smolagents.agents import ToolCallingAgent
|
||||||
|
from smolagents import CodeAgent, HfApiModel, tool
|
||||||
|
from huggingface_hub import login
|
||||||
|
from smolagents import LiteLLMModel
|
||||||
|
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
import os
|
||||||
|
|
||||||
|
# load .env file
|
||||||
|
load_dotenv()
|
||||||
|
|
||||||
|
api_key = os.environ.get('API_KEY')
|
||||||
|
|
||||||
|
#print(api_key)
|
||||||
|
login(api_key)
|
||||||
|
|
||||||
|
|
||||||
|
# Select LLM engine to use!
|
||||||
|
model = HfApiModel()
|
||||||
|
# model = LiteLLMModel(
|
||||||
|
# model_id="ollama_chat/llama3.1",
|
||||||
|
# api_base="http://localhost:11434", # replace with remote open-ai compatible server if necessary
|
||||||
|
# #api_key="your-api-key", # replace with API key if necessary
|
||||||
|
# #num_ctx=8192, # ollama default is 2048 which will often fail horribly. 8192 works for easy tasks, more is better. Check https://huggingface.co/spaces/NyxKrage/LLM-Model-VRAM-Calculator to calculate how much VRAM this will need for the selected model.
|
||||||
|
# )
|
||||||
|
|
||||||
|
|
||||||
|
@tool
|
||||||
|
def get_random_fact() -> str:
|
||||||
|
"""
|
||||||
|
Fetches a random fact from the "uselessfacts.jsph.pl" API.
|
||||||
|
Returns:
|
||||||
|
str: A string containing the random fact or an error message if the request fails.
|
||||||
|
"""
|
||||||
|
url = "https://uselessfacts.jsph.pl/random.json?language=en"
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = requests.get(url)
|
||||||
|
response.raise_for_status()
|
||||||
|
|
||||||
|
data = response.json()
|
||||||
|
|
||||||
|
return f"Random Fact: {data['text']}"
|
||||||
|
except requests.exceptions.RequestException as e:
|
||||||
|
return f"Error fetching random fact: {str(e)}"
|
||||||
|
|
||||||
|
agent = ToolCallingAgent(tools=[get_random_fact], model=model)
|
||||||
|
# agent = CodeAgent(tools=[get_weather], model=model)
|
||||||
|
|
||||||
|
agent.run("Tell me a random fact!")
|
61
T2_tools_define/wiki_tools.py
Normal file
61
T2_tools_define/wiki_tools.py
Normal file
@ -0,0 +1,61 @@
|
|||||||
|
from typing import Optional
|
||||||
|
import requests
|
||||||
|
|
||||||
|
from smolagents.agents import ToolCallingAgent
|
||||||
|
from smolagents import CodeAgent, HfApiModel, tool
|
||||||
|
from huggingface_hub import login
|
||||||
|
from smolagents import LiteLLMModel
|
||||||
|
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
import os
|
||||||
|
|
||||||
|
# load .env file
|
||||||
|
load_dotenv()
|
||||||
|
|
||||||
|
api_key = os.environ.get('API_KEY')
|
||||||
|
|
||||||
|
#print(api_key)
|
||||||
|
login(api_key)
|
||||||
|
|
||||||
|
|
||||||
|
# Select LLM engine to use!
|
||||||
|
model = HfApiModel()
|
||||||
|
# model = LiteLLMModel(
|
||||||
|
# model_id="ollama_chat/llama3.1",
|
||||||
|
# api_base="http://localhost:11434", # replace with remote open-ai compatible server if necessary
|
||||||
|
# #api_key="your-api-key", # replace with API key if necessary
|
||||||
|
# #num_ctx=8192, # ollama default is 2048 which will often fail horribly. 8192 works for easy tasks, more is better. Check https://huggingface.co/spaces/NyxKrage/LLM-Model-VRAM-Calculator to calculate how much VRAM this will need for the selected model.
|
||||||
|
# )
|
||||||
|
|
||||||
|
|
||||||
|
@tool
|
||||||
|
def search_wikipedia(query: str) -> str:
|
||||||
|
"""
|
||||||
|
Fetches a summary of a Wikipedia page for a given query.
|
||||||
|
Args:
|
||||||
|
query: The search term to look up on Wikipedia.
|
||||||
|
Returns:
|
||||||
|
str: A summary of the Wikipedia page if successful, or an error message if the request fails.
|
||||||
|
Raises:
|
||||||
|
requests.exceptions.RequestException: If there is an issue with the HTTP request.
|
||||||
|
"""
|
||||||
|
url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{query}"
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = requests.get(url)
|
||||||
|
response.raise_for_status()
|
||||||
|
|
||||||
|
data = response.json()
|
||||||
|
title = data["title"]
|
||||||
|
extract = data["extract"]
|
||||||
|
|
||||||
|
return f"Summary for {title}: {extract}"
|
||||||
|
|
||||||
|
except requests.exceptions.RequestException as e:
|
||||||
|
return f"Error fetching Wikipedia data: {str(e)}"
|
||||||
|
|
||||||
|
|
||||||
|
agent = ToolCallingAgent(tools=[search_wikipedia], model=model)
|
||||||
|
# agent = CodeAgent(tools=[get_weather], model=model)
|
||||||
|
|
||||||
|
agent.run("who is the director of the movie inception?")
|
Loading…
Reference in New Issue
Block a user